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Research Effort
• Actinide containing systems. (U, Pu, etc.)

– Requires high-accuracy
• c / mass effects
• spin-orbit (SO) effects
• structural and dynamic correlation effects.

– Software must be modified.
• Calculations require the fastest/biggest machines.

• Chemistry
– f-f transition energies (+assignments)
– Large ionization pots. (large formal charges)



Approach.
• Build models using

modern formalism.
– ARECPs-incorporates

important c / mass
effects in core.

– SO operator rigorously
included. (ARECP-RECP)

– In a form useable in
standard (spin-orbital)
CI code

– Permits valence
correlation.

• Build upon available
software.
– F90 and C languages.
– Global Arrays (GA)

for distributed data.
– Parallel I/O (ChemIO)

for distributed out-of-
core work.

– Start with available
“legacy” code
(CIDBG.X)

• COLUMBUS system



Conventional SOCI
• Massive, sparse

eigenvector problem.
• Symmetric and Real*

• Conventional, i.e.,
“Direct” approach
– Construct whole matrix.
– Store H on disk

• Solve iteratively.
– (Davidson’s method)

• *Can be made real for select
point groups

• Construct H in double-
group basis.
– Precompute

configuration list.
– Include all configs

satisfying total “J”
(neither LS not jj coupling)

– Store coupling
information in
memory/disk

– fine-grain access.

• Eigenvectors (~40-50)
– Blocks of degeneracies
– all roots under 2-3 eV



Spin-Orbit CI (SOCI)
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H. time-independent hamiltonian operator.
µ,  index valence electrons.  indexes nuclei.
UARECP is j averaged-RECPs.

l (r) = 2 Ul
RECP/(2l+1)

Ol formally projects (r) back into |lml>.

Rigorous inclusion of spin-orbit terms. AO integrals only in standard basis required.



Sample hamiltonian

Zero elements 
colored green.
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Parallel SOCI
• CIDBG.X algorithm changes.

– Wavefunction description.
• Precompute couplings in concurrent

blocks
• Store in distributed memory memory*

– Hamiltonian construction
• Static load-balancing scheme.
• Construct in concurrent blocks
• Store in distributed “storage”

– Eigenvectors
• Borrow NWChem parallel Davidson.

• Global Arrays 2.3
(GA)
– Constructs and

manages distributed-
data space.

– Permits portable imp.
– Little perceived

performance penalty.
– Simple

implementation

*fine grained access. Works very well on the T3E. High latency on the SPs
requires the application to chunk data.



Parallel H storage
• Method One - Fastest

– Store H in aggregate
memory using GA

– Simple distribution
changes

• Limited problem sizes.
– approx. 8 million

double-groups.
(theoretical)

– Largest to-date:
3 million

• Method Two - Larger
problems.
– Store H onto disks

using ChemIO.
– Exclusive access

model (EAF), no
striping.

– Each node writes “its”
part of H to its local-
disk.

• I/O times slower than
memory access.



SOCI Procedure. (typical)

ARGOS.X
(parallel)

NWChem
Massively Parallel

AO Integrals

SCFPQ.X
sequential

spherical ave.

MCSCF.X
sequential
flexibility

Optimum orbitals

CGDBG.X
sequential

NWChem
Parallel

Wavefunction conf.

Typical SOCI Run

TRAN.X
sequential

NWChem
Parallel

Generate MOs

Memory-cached
sparse H in memory

Disk-cached
(parallel I/O)

Generate SOCI
Massively Parallel

Final Analysis

ARECPs/RECPs are generated in a
previous series of steps.



SOCI Performance
Method 1- Memory cached

Memory-cache version.

0.001

0.01

0.1

1

10

100

1 10 100 1000

Parallel performance of SOCI on the Cray T3E.

LiBe(11050)
LiBe(62790)
U(BH4)4(211831)
Am3+(A) SSOCI(full) 476109
Am2+(A2) SSOCI(full) 1073388
Am2+(A2) SDSOCI (frozen) 2668380
LiBe(11050)-SP2 (actual)
LiBe(62790)-SP2_actual
U(BH4)4-extrapolate.

Number of T3E Nodes.

ideal 

H construction time.



Disk I/O SOCI.

• Initial tests
– Replaced H memory

store with H disk
store.

– A simple approach
– Permits restart
– BUT ! Subsequent

read performance
poor.

• I/O Access too fine-
grained

• Prefetching algorithm
– Increased performance
– Uses same algorithm.
– Portable.

• Method.
– Explicit (application

level) prefetching
– H store still performing

single column access.



Application prefetching.

• Attempt to increase read
performance.
– by minimizing latency
– achieving better B.Width

utilization.
• Method

– H columns are contiguous
on disk.

– Hence, Read several H
columns at one time.

• Method.
– Simple additional

interface to ChemIO.
– Specify maximum

prefetched rows.
– Fully in-core if possible.

• Experiments
– How much should we

prefetch ?
– how good can we get ?



Hamiltonian I/O step

• Performance good.
– Write 1 column at a time. (non-zeros only)
– No “chunking” of writes.
– H sufficiently complicated that 1-column

accesses are good.
• No additional modifications (yet) required.



Eigenvector I/O step

• Problem step.
– Lots of I/O latencies.
– H columns sparse (10K)

• Poor utilization of BW

– Little work per column read.
– Many vectors/poor guesses/Lots of iterations.

• Requires prefetching or equivalent



Prefetching Tests.
Parallel matrix-vector product.
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Prefetching summary.

• Hamiltonian construction.
– Two times slower than in-core version.
– Still room for improvement.
– Good for now.

• Matrix-vector products.
– 5-8 times slower per product.

• (nominal prefetching)

– Still less time than H construction.
– Lots of new things to try.



Future Plans

• Further optimizations
and tuning of SOCI.

• Semi-direct approach.
• Determine distribution of

work w.r.t. stored H
blocks.

• Build this into integrated
storage and load
description.

• Incorporate dynamic
load-balancing. 

• Explore MPI-2
implementation.

• Interface/Merge
ideas into
NWChem.

• SOCI analytic
gradients
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Select WWW sites and References

Project: http://www.emsl.pnl.gov:2080/proj/tms/hpcc_actinides/source.html

Global Arrays: http://www.emsl.pnl.gov:2080/docs/global/ga.html
ChemIO: http://www-c.mcs.anl.gov/chemio/

COLUMBUS: http://www.itc.univie.ac.at/~hans/Columbus/columbus_homep.html.
NWChem: http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html

RECPs: Ermler, W.C.; Lee, Y.S.; Christiansen, P.A.; Pitzer, K.S. Chem. Phys. Lett. 1981, 81, 70. 

SOCI (sequential): Pitzer, R.M.; Winter, N.W. J. Phys. Chem. 1988, 92, 3061.

This list is intended to be representative and not complete.


